1. What does $f^{\prime}(x)$ represent in terms of the graph of a function f ?
2. Suppose you are given two points, $(a, f(a))$ and $(b, f(b))$, on a graph of the function f. How would you find the slope of the secant line through those points?
3. Consider the function $f(x)=x^{3}+2 x^{2}-x-2$.
(a) Graph f on $[-2,1]$ on the plane given on page 2 .
(b) Describe the graph of f on $[-2,1]$. List as many characteristics as possible.
(c) Graph the secant line through $(-2, f(-2))$ and $(1, f(1))$ on the same plane.
(d) What is the slope of the secant line?
(e) Is there a c in the interval $(-2,1)$ such that $f^{\prime}(c)$ is equal to the slope of the secant line from part (c)? Why or why not?

4. Consider the function $g(x)=\frac{1}{x^{2}}$.
(a) Graph g on $[-2,2]$ on the plane given on page 4 .
(b) Describe the graph of g on $[-2,2]$. List as many characteristics as possible.
(c) Graph the secant line through $(-2, g(-2))$ and $(2, g(2))$ on the same plane.
(d) What is the slope of the secant line?
(e) Is there a c in $(-2,2)$ such that $g^{\prime}(c)$ is equal to the slope of the secant line from part (c)? Why or why not?

5. You previously listed physical characteristics of $f(x)=x^{3}+2 x^{2}-x-2$ and $g(x)=\frac{1}{x^{2}}$.
(a) How are the functions similar?
(b) How are the functions different?
6. Now, consider the following theorem:

Theorem 1 (Mean Value Theorem) Suppose $y=h(x)$ is a continuous function on a closed interval $[a, b]$ and differentiable on the interval's interior (a, b). Then there is at least one point c in (a, b) at which

$$
h^{\prime}(c)=\frac{h(b)-h(a)}{b-a} .
$$

(a) What does $h^{\prime}(c)$ represent in terms of a graph?
(b) What does $\frac{h(b)-h(a)}{b-a}$ represent in terms of a graph?
(c) What does $h^{\prime}(c)=\frac{h(b)-h(a)}{b-a}$ mean graphically?
(d) Based on the Mean Value Theorem, why did f (from problem 3) have a tangent line with the same slope as the secant line but g (from problem 4) did not?
(e) Graph a random function f which is continuous on the closed interval $[-3,2]$ and differentiable on the open interval $(-3,2)$. Graph the secant line through $(-3, f(-3))$ and $(2, f(2))$. Find an x in the interval $(-3,2)$ such that the tangent line at x is parallel to the secant line. Graph that tangent line.
7. A consequence of the Mean Value Theorem is Rolle's Theorem.

Theorem 2 (Rolle's Theorem) Suppose $y=h(x)$ is a continuous function on a closed interval $[a, b]$ and differentiable on the interval's interior (a, b). If $h(a)=h(b)$, then there is at least one number c in (a, b) at which

$$
h^{\prime}(c)=0 .
$$

(a) Why is Rolle's Theorem a consequence of the Mean Value Theorem?
(b) ${ }^{1}$ The function

$$
f(x)= \begin{cases}0, & x=0 \\ 1-x, & 0<x \leq 1\end{cases}
$$

is zero at $x=0$ and $x=1$ and differentiable on $(0,1)$, but its derivative on $(0,1)$ is never zero. How can this be? Doesn't Rolle's Theorem say the derivative has to be zero somewhere in $(0,1)$? Justify your answer.

[^0](c) Give an example of a function f that is continuous on a closed interval $[a, b]$ (be sure to include the interval) such that $f(a)=f(b)$ but f is not differentiable on the open interval (a, b). Using the function you created and the corresponding interval, does there exist a c in (a, b) such that $f^{\prime}(c)=0$? Does Rolle's Theorem apply? Why or why not?
(d) Give an example of a non-constant function f and domain which satisfies the assumptions of Rolle's Theorem. Then, find a value of c in your domain such that $f^{\prime}(c)=0$.

[^0]: ${ }^{1}$ This question is based off of a problem found in Thomas' Calculus, 13 th Edition, section 4.2, problem 13.

