Completing the Square Activity

Today, we'll use "algebra tiles" and teamwork to explore the concept of "Completing the Square," an important algebraic technique involving quadratic expressions.

Part 1: Exploring with Algebra Tiles

1. Experiment 1: Arrange 1 large square (x^{2}) and 6 long rectangles (x) to start forming a larger square. How many small squares (1×1) are needed to complete the square?

Answer: \qquad
2. Experiment 2: Now try with 1 large square $\left(x^{2}\right)$ and 8 long rectangles (x). This time, how many small squares are needed?

Answer: \qquad
3. Table Activity: In your group, experiment with different numbers of long rectangles (always using even numbers) and record your finding in the table below:

\# of Long Rectangles (x)	\# of Small Squares Needed

4. Discussion Question: Do you notice any pattern or relationship between the number of long rectangles and the number of small squares needed? Describe your observations.

Part 2: Understanding Perfect Square Trinomials

Objective: Relate your findings from Part 1 to algebraic expressions and the concept of perfect square trinomials.

1. Reflection: In Part 1, you found that if you have 6 long rectangles, then 9 small squares are needed to complete the square. By considering two ways of finding the area of the large square that you formed, explain (without using algebra) how this shows that $x^{2}+6 x+9=(x+3)^{2}$.
2. Challenge Problem: Given the expression $x^{2}+8 x+11$, use your algebra tiles to attempt to form a larger square. Will there be any tiles missing or extra? How many?
3. Algebraic Representation: Based on the challenge problem, represent $x^{2}+8 x+11$ as the square of a binomial plus or minus a constant. That is, rewrite it in the form $(x \pm h)^{2} \pm k$.

Part 3: Completing the Square with Equations

Objective: Use the technique of completing the square to solve quadratic equations.

1. Equation 1: Solve $x^{2}+10 x+14=0$ using the method of completing the square.
2. Equation 2: Solve $x^{2}-6 x+5=0$ using the method of completing the square. Then use factoring to confirm your solution.

Part 4: Application Challenges

Objective: Apply completing the square to various scenarios.

1. Graph a Parabola: Sketch the graph of the parabola $y=x^{2}-6 x+8$ by using completing the square along with transformations of the graph of $y=x^{2}$. (Do not use the axis of symmetry or a table of values.) Then state the vertex of the parabola.

Vertex: \qquad
2. Center and Radius of a Circle: Determine the center and radius of the circle given by the equation $x^{2}+4 x+y^{2}+6 y-12=0$ by using completing the square.
\qquad Radius: \qquad

Part 5: Class Discussion to Derive the Quadratic Formula

You've probably seen the Quadratic Formula:

$$
\begin{aligned}
& \text { The solutions to } a x^{2}+b x+c=0 \text {, where } a \neq 0 \text {, are given by: } \\
& \qquad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Where does this mysterious formula come from? Follow along with a class discussion to see.

