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The Mathematical Inquiry Project (MIP) is a statewide collaboration among mathematics faculty 
in Oklahoma to improve entry-level undergraduate mathematics instruction through three 
guiding principles:    

 
Active Learning: Students engage in active learning when they work to resolve a problematic 

situation whose resolution requires them to select, perform, and evaluate actions whose 
structures are equivalent to the structures of the concepts to be learned.  

For more information on the MIP Active Learning Principle, visit https://okmip.com/active-
learning/ 
 

Meaningful Applications: Applications are meaningfully incorporated in a mathematics class to 
the extent that they support students in identifying mathematical relationships, making and 
justifying claims, and generalizing across contexts to extract common mathematical 
structure.   

For more information on the MIP Meaningful Applications Principle, visit 
https://okmip.com/applications/ 
 

Academic Success Skills: Academic success skills foster students’ construction of their identity 
as learners in ways that enable productive engagement in their education and the associated 
academic community.   

For more information on the MIP Academic Success Skills Principle, visit 
https://okmip.com/academic-success-skills/ 
 

Consultation  

The MIP encourages those who are interested in submitting a proposal to discuss their ideas with 
a member of the project team, who can (1) provide feedback and advice on initial ideas, (2) 
connect potential CoRD members with others who are interested in working on similar ideas, 
and (3) offer guidance throughout the preparation and execution of the proposal. The MIP team 
will also organize events throughout the year to allow multiple CoRDs to present their progress 
and discuss ways to benefit from and integrate their approaches. 
 
Description of CoRD products 

The products produced by each Calculus I CoRD should contain four features. The MIP team is 
available to discuss, clarify, and provide resources for each:  

1. A description of the primary conceptual goals: This analysis should include details such 
as the ways of understanding desired as an outcome for all students in the course, 
common entry points for students’ understanding (including relevant supporting 



concepts), a progression of challenges and solutions that students should engage through 
the module to develop these understandings, common pitfalls in the learning process and 
ways to address them, and a description of ways in which these ideas support thinking 
and learning throughout the entire course. 

2. Instructional resources: These resources should be designed to support a coherent and 
productive way of reasoning about the targeted concept throughout the calculus course. 
The materials should include commentary for instructors about implementation of the 
resources and assessments that will help identify how their students have progressed 
relative to the targeted student learning goals. Supporting resources for instructors should 
also identify ways to improve their instruction relative to the targeted concept. 

3. A description of how the instructional resources developed by the CoRD could be 
adapted to a corequisite class, including any additional resources necessary to do so. 

4. Description of how the CoRD’s products support the MIP components of inquiry: active 
learning, meaningful applications, and academic success skills. 

 
After a successful review, the CoRD will test their products with a class or group of students and 
incorporate a description of the test implementation and its results, a discussion of the 
refinements and recommendations made based on test implementation, and short video clips with 
commentary to illustrate effective implementation. 
 
Review and Revision 

Once a CoRD submits a module, it will be reviewed by at least two other faculty with expertise 
in the topic to inform an editorial decision of “accept with minor revision,” “revise and 
resubmit,” or “reject,” along with directions for revision if appropriate.  (This more formal stage 
of review is distinct from the more informal feedback that a team might receive by interacting 
with an MIP team member on an ongoing basis.)  After a favorable review, the CoRD will revise 
and pilot their module, incorporating feedback gained during the review process and submit a 
final module for publication on the project website.  
 
Author Stipends 

Each author in the CoRD will receive a $2,500 stipend after delivery of a complete initial draft of 
the module and an additional $1,000 stipend after delivery of a complete revision of the module 
based on the editorial decision.  
 
Opportunities for leading regional workshops 

The MIP will leverage faculty leadership and expertise developed through its Initiation 
Workshops and CoRDs to also develop and deliver 40 institutional and regional professional 
development workshops, across the state of Oklahoma. Each Regional Workshop will last a full 
day and engage approximately 20 mathematics faculty in implementing one or two of the 
modules developed by the CoRDs and ensuring familiarity with the module resources. Each 
workshop will be led by faculty from the respective CoRDs with support from the MIP team.    
 
 



Targeted Concepts for Calculus I CoRDs 

The MIP seeks to support the development of research-based instructional and curricular design 
principles on the following targeted concepts for Calculus I; each of these targeted concepts 
emerged from the work done by the faculty who participated in the Calculus I Initiation 
Workshop. See the ATTACHED pages for more details about each of these topics (which are 
listed in no particular order). 

1. Functions 
2. Limits 
3. Local linearity, differentials, infinity, and infinitesimals 

4. Rate of change 

5. Continuity 

6. Accumulation, integrals, and the fundamental theorem of calculus 

7. Modeling 
 
Proposal Requirements 

Proposals should include each of the following: 

 A cover page designating which of the targeted topics the proposed CoRD will address, 
names of all proposed CoRD members (2-5 people), their institutions, email addresses, 
and phone numbers. 

 The CoRD’s initial image of how it will address the four elements outlined in the 
“Description of CoRD Products” above. 

 A description of prior experience of each CoRD member relevant to their development of 
the proposed module. 

 A proposed timeline for the completion of the four elements outlined in the “Description 
of CoRD Products” above.  

 
Proposal Length 

The full text of a proposal should not exceed 2,000 words. 
 
Proposal Submission 

Completed proposals should be emailed to William (Bus) Jaco at william.jaco@okstate.edu.  
Proposals should be submitted by Friday, May 27, 2022 for full consideration. The MIP will 
continue to accept and review proposals after this date, however we strongly encourage 
discussions with the project team for later submissions to avoid proposing work on topics that 
have already been assigned a CoRD.  
 
The MIP plans to respond to proposals by early November. During the review of proposals, the 
MIP may request additional information or modifications before approval. Initial draft of 
modules to be reviewed will be due January 20, 2023.  



Calculus I: Targeted Concepts for  
Collaborative Research and Development Teams 

 
The information below are syntheses of the key aspects of each targeted topic developed by the 
faculty members who participated in the Calculus I Initiation Workshop. These syntheses are 
intended to serve as a guide for faculty members who are interested in or have already joined a 
CoRD.  The MIP is available throughout the CoRD development process to answer questions 
and provide feedback on ideas or drafts of CoRD products. 
 
Targeted Concept 1: Functions 

Functions serve as the basic language and notation for students’ experience in Calculus I. A 
robust understanding of functions is therefore critical for students’ success in the course. Many 
difficulties students experience while reasoning with functions are based in a static “action view” 
of evaluating a function for one input at a time, typically based on an algebraic formula. In 
contrast, a “process view” of function in which a student can conceive of the entire process 
happening to all input values at once, enables them to conceptually run through a continuum of 
input values while attending to the resulting impact on output (e.g., see the discussion of action 
and process views in Oehrtman, Carlson, & Thompson, 2008). This way of thinking about the 
covariation of input and output values is foundational for constructing meaningful formulas and 
graphs when modeling relationships in applied contexts, interpreting limits conceptually or 
formally, and thus reasoning about all concepts defined in terms of limits (Carlson et al., 2002; 
Moore & Carlson, 2012; Oehrtman, Carlson, & Thompson, 2008). 

Generally, modules developed by a CoRD focusing on functions should support students in at 
least several of the following: 

 Coordinating multiple function processes (e.g., through composition, addition, or in 
defining an increasing function).  

 Making inferences about the behavior of functions through a quantitative analysis of their 
symbolic representation.  

 Reasoning about the behavior of functions on entire intervals in addition to single points 
(e.g., describing a function’s behavior as input values increase continuously through the 
domain or finding the image of an interval)  

 Reversing function processes (e.g., finding the preimage of a specified output value or 
interval). 

 Making and comparing judgments about functions across multiple representations. 
 Use dynamic graphing software (e.g., Geogebra or Desmos) to enable students to move 

points continuously throughout a domain and dynamically see the resulting changes in 
other features. 

 Considering domain and range in applications. 

Participants of the Calculus I Initiation Workshop suggested the following ways modules for this 
targeted topic could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 



Active Learning: Students should be engaged in tasks that go beyond treating functions as 
equations and provide opportunities for them to create functions to solve novel problems and 
invoke function notation in ways responsive to that problem-solving activity. By making 
students responsible for generating appropriate functions in various problem-solving 
situations, rather than being provided a formula to work with, they may begin to see 
functions as a tool for representing quantitative relationships. Additionally, students should 
interpret graphical representations of functions as representations of the simultaneous 
variation of quantities’ measures in a coordinate system. This conception of graphical 
representations contrasts with the associations students often make between mathematical 
visual properties of a graph as an object (e.g., constant rate of change means “straightness”; 
exponential growth means “curving up”; quadratic means “U-shaped”; inverse functions 
mean “flip over the diagonal”). 
 
Meaningful Applications: Modules may emphasize modeling and interpretation to reinforce 
functions as a tool to describe the world. The coordination of two quantities and univalence 
built into functions gain compelling meaning from natural relationships and constraints 
between quantities in real world situations. One may ask students to contrast the domain and 
range of functions based on the problem context with the domain and range derived from 
algebraic constraints alone. The concept of functions and function notation can be motivated 
and reinforced by engaging students in reasoning with and expressing quantities determined 
through correspondence, such as, Δh = h(t + Δt) – h(t). Students should also identify and 
interpret key parameters in each function class in terms of the context in which it is being 
applied and in its various mathematical representations. 
 
Academic Success Skills: When improperly motivated, introduction of functions can seem 
arbitrary and unnecessarily complicated, raising a barrier to many students. Modules should 
help students become confident in their use of functions as a foundation of the language of 
mathematics and science. 

 
Initial resources 

Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process 
conception of function. Educational Studies in Mathematics, 23(3), 247-285. 

Carlson, M., Jacobs, S., Coe, E., Larsen, S., Hsu, E. (2002). Applying covariational reasoning 
while modeling dynamic events: A framework and a study. Journal for Research in Mathematics 
Education, 33(5), 352-378. 

Dubinsky, E. & Harel, G. (1992). The nature of the process conception of function. In E. 
Dubinsky & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy 
(pp. 85-106). Washington D.C.: Mathematical Association of America. 

Oehrtman, M., Carlson, M., & Thompson, P. (2008). Foundational reasoning abilities that 
promote coherence in students' function understanding. In M. Carlson & C. Rasmussen (Eds.), 
Making the Connection: Research and Practice in Undergraduate Mathematics, MAA Notes, 
Volume 73, 27-41. Washington, DC: Mathematical Association of America. 



Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational 
ways of thinking mathematically. Compendium for Research in Mathematics Education (pp. 
421-456). Reston, VA: National Council of Teachers of Mathematics. 

 
  



Targeted Concept 2: Limits 

Limits are often the first mathematical operation students encounter that cannot be conceived 
through finite computation, leaving them to negotiate spontaneous concepts of an actual infinity 
with infinite processes that do not end. Covariational reasoning about functional dependence is 
required to first conceptualize, then to coordinate, two such infinite processes quantitatively 
(e.g., a domain process in which x→a and a codomain process in which f (x)→L, or n→∞ and 
an→L). Such dynamic reasoning about functions is especially important in calculus, as the 
argument of a limit becomes more quantitatively complex, such as a rate of change or an 
accumulation. 

Generally, modules developed by a CoRD focusing on limits should support students in at least 
several of the following: 

 Operating in small neighborhoods then extending inferences beyond them. 
 Treating limits conceptually in terms of approximating and refining approximations to 

achieve a desired level of accuracy. These ideas can be initially developed in terms of 
approximating instantaneous rates, such as speed, and accumulation of quantities with 
continuously varying rates. Subsequently, they should generalize to other contexts with 
the same limiting structure. 

 Computer-based methods to experience and visualize the limit process. 
 Repeated refinement of approximations as an experience of the limiting process 

Participants of the Calculus I Initiation Workshop suggested the following ways modules on the 
topic of limits could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 

Active Learning: By actively computing several values of a difference quotient or Riemann 
sums for a derivative or definite integral, respectively, students can experience the limit 
process. Furthermore, by asking students to find such approximations to given degrees of 
accuracy, they must then reason in a way consistent with the formal ε-δ definition (just in a 
different language). 
 
Meaningful Applications: Applications can play a particularly important role in students’ 
experiences about limits. Specifically, when derivatives and integrals are introduced by 
engaging in the same problem-solving process across multiple contexts, students may 
recognize the common structure across all of their activity as the mathematical concept. 
While distance-velocity-time examples make excellent first examples, it is too often the only 
example students see. Such students are then likely limited to a context-dependent 
understanding of derivatives and integrals. Other contexts such as area and volume, mass and 
density, pressure and force, etc. provide good opportunities to help students generalize their 
understanding.  
 
Academic Success Skills: We often see students stagnate by the fact that they think they 
develop enough procedural fluency to solve computational problems, yet do not understand 
the meanings of the limit values they are finding. Communicate to students that they need a 
richer understanding in a way that doesn’t discourage them. Help motivate digging in to the 
deeper meanings of calculus rather than just the procedural “shortcuts.” Encourage them to 



value understanding why they are working with the particular derivatives or integrals that 
appear in a situation. 

 
Initial resources 

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K. & Vidakovic, D. (1996). 
Understanding the limit concept: Beginning with a coordinated process schema, Journal of 
Mathematical Behavior, 15(2), 167-192. 

Cornu, B. (1991). Limits. In D. Tall (Ed.). Advanced Mathematical Thinking, pp. 153-166. 
Boston: Kluwer. 

Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit 
concepts. In Making the connection: Research and teaching in undergraduate mathematics 
education (Vol. 73, pp. 65-80). Mathematical Association of America Washington, D.C. 

Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors 
for limit concepts. Journal for Research in Mathematics Education, 396-426. 

Szydlik, J. (2000). Mathematical beliefs and conceptual understanding of the limit of a function. 
Journal for Research in Mathematics Education, 31, 258-276. 

Tall, D. (1992). The Transition to Advanced Mathematical Thinking: Function, Limits, Infinity, 
and Proof. In D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and 
Learning. MacMillan Publishing Company, New York, 495-511.  

Williams, S. R. (1991). Models of limit held by college calculus students. Journal for Research 
in Mathematics Education, 22, 219-236. 

 
Targeted Concept 3: Local linearity, differentials, infinity, and infinitesimals 

Researchers (e.g., Thompson et al, 2015) have demonstrated that many calculus students’ 
understanding of derivatives is not sufficiently grounded in robust meanings of rate of change. 
When prompted to explain what the derivative at a point represents, students often reply, “The 
slope of the tangent line.” Limited to such geometric interpretations, students struggle to apply 
derivatives in novel contexts and to understand more advanced topics in calculus, such as linear 
approximation, L’Hopital’s rule, implicit differentiation, related rates, Riemann sums, definite 
integrals, and the fundamental theorem of calculus. To address this problem, several 
mathematics educators (e.g., Ely, 2021) have documented the affordances of students’ 
conceptualizing differentials as linear functions (i.e., as infinitesimal changes that vary 
proportionally). Related recommendations include supporting students’ interpretation of 
“instantaneous rate of change” as “average rate of change over infinitesimally small intervals 
where the corresponding changes in the measures of the input and output quantities are 
proportional.” 

Generally, modules developed by a CoRD focusing on infinity and infinitesimals should support 
students in at least several of the following: 

 Engage students with applied contexts (other than distance-velocity-time and area) that 
require them to reason quantitatively about derivatives and integrals. 



 Use derivatives for linear approximations in instances where an instantaneous rate is 
known but a derivative function is unknown (as in applying Euler’s method or Newton’s 
method). 

 Conceptualizing dx not just as a trivial part of integral notation, or as just an indicator of 
the independent variable for antidifferentiation, but as an infinitesimal change that when 
multiplied by the quantity represented by the expression in the integrand yields an 
incremental accumulation of some quantity.   

 Understand dy/dx not just as a fraction but as the constant of proportionality that relates 
corresponding infinitesimal changes of covarying quantities.   

Participants of the Calculus I Initiation Workshop suggested the following ways modules for this 
targeted topic could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 

Active Learning: Engage students in tasks that require them to leverage their understanding 
of the invariant multiplicative relationship between corresponding infinitesimal changes in 
the input and output quantities of a differentiable function to make inferences about the 
function, and to use information about the function to make inferences about its derivative at 
a point.  
 
Meaningful Applications: Meaningful applications should support students’ abstraction of 
local linearity, or a proportional relationship between differentials, conceptualized as 
corresponding infinitesimal changes in the input and output quantities of a differentiable 
function. Meaningful applications should support the need for the local linearity. It is 
important to remain aware that just because an application is a practical application does not 
automatically make it meaningful. Some criteria for meaningful applications that might 
support students’ learning of the targeted concept include (1) contexts that require students to 
solve for changes (or nearby points) given a rate function they cannot simply 
antidifferentiate, (2) reference to quantities other than speed that are defined in terms of a 
variable other than elapsed time can support generalization and abstraction.  
 
Academic Success Skills: Students are often overwhelmed by their perceived expectation to 
become proficient in applying a variety of skills and strategies required to solve different 
classes of disconnected problem types. Engaging students in experiences that enable them to 
recognize the broad applicability of conceptualizing differentials as linear functions, and the 
derivative as a linear map, reduces the cognitive load of memorizing an assortment of 
procedures for solving routine problems, and fosters students’ positive affect and productive 
mathematical engagement. 

 
Initial resources 

Bos, H. J. M. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian 
calculus. Archive for History of Exact Sciences, 14, 1–90. 

Dray, T., & Manogue, C. (2003). Using differentials to bridge the vector calculus gap. College 
Mathematics Journal, 34, 283–290. 



Dray, T., & Manogue, C. (2010). Putting differentials back into calculus. College Mathematics 
Journal, 41, 90–100. 

Ely, R. (2010). Nonstandard student conceptions about infinitesimal and infinite numbers. 
Journal for Research in Mathematics Edu- cation, 41, 117–146. 

Ely, R. (2017). Reasoning with definite integrals using infinitesimals. Journal of Mathematical 
Behavior, 48, 158–167. 

Ely, R. (2021). Teaching calculus with infinitesimals and differentials? ZDM Mathematics 
Education, 53(3), 591-604. 

Keisler, H. J. (2011). Elementary calculus: an infinitesimal approach (2nd ed.). New York: 
Dover Publications. (ISBN 978-0-486-48452-5). 

Ransom, W. R. (1951). Bringing in differentials earlier. The American Mathematical Monthly, 
58, 336–337. https://doi. Org/10.2307/2307725. 

Tall, D., (1980). Intuitive infinitesimals in the calculus. Abstracts of short communications, 
Fourth International Congress on Mathematical Education, Berkeley, p. C5. 

Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48, 199–238. 
Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. 
ZDM, 41(4), 481–492. 
Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental 
theorem of calculus. Educational Studies in Mathematics, 26(2–3), 229–274. 
Thompson, P. W., & Ashbrook, M. (2019). Calculus: Newton, Leibniz, and Robinson meet 
technology. Retrieved August 18, 2020, from https://patthompson.net/ThompsonCalc/. 
 
  



Targeted Concept 4: Rate of change 

A critical foundation for reasoning about rates of change is conceiving of changes in quantities 
as quantities in their own right and distinguishing such changes from the original quantities. 
From this foundation, students may begin to understand, distinguish, and use the meanings of 
constant rate of change and average rate of change in various contexts and representations. These 
concepts, in turn, form a foundation for students’ understanding and reasoning about 
instantaneous rate of change in calculus. In particular, constant rate of change entails a 
proportional relationship between corresponding changes in the measures of the two quantities 
(e.g., see the conceptual analysis in Thompson, 1994). Reasoning about these changes and their 
proportional relationship across multiple representations can build an important foundation for 
further development of average and instantaneous rates. Non-quantitative interpretations of 
constant and average rate of change restrict students to iconic images, such as “steeper is faster.” 
Although such pseudo-structural reasoning may be sufficient for many procedural applications of 
derivatives, they prevent students from productively unpacking these ideas when necessary in 
problem-solving situations. 

Generally, modules developed by a CoRD focusing on rate of change should support students in 
at least several of the following: 

 Help students conceive of changes in quantities as meaningful quantities in their own 
right (e.g., see early tasks involving describing and reasoning about changes in quantities 
in Carlson, Oehrtman, & Moore, 2016). 

 Engage students in interpreting average rates of change as a constant rate for an auxiliary 
scenario with the same total changes in both quantities. These materials could reinforce 
and motivate the use of function notation in algebraic representations of average rates, 
developing the difference quotient.  

 Informally introduce instantaneous rates through a context that necessitates finding 
average rates over progressively smaller intervals.  

 Unpack rate of change statements in terms of coordinating amounts of change. Such tasks 
may ask students to analyze amounts of change in the function for constant increments of 
the independent variable (e.g., see MA3 reasoning in Carlson et al., 2002).  

 Draw diagrams that represent changes in the output variable corresponding to successive 
increments in the input variable to help students conceptualize varying rates more 
robustly. Students should subsequently represent these relationships graphically and 
algebraically and interpret them in terms of rate of change in the problem context.  

Participants of the Calculus I Initiation Workshop suggested the following ways modules for this 
targeted topic could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 

Active Learning: Students in a Calculus I course will have significant experience applying 
procedures to solve routine problems about constant or average rate of change. Thus, it is 
particularly important that modules engage students in tasks that challenge these rote 
applications and require them to explore the underlying meanings, especially in terms of 
invariant multiplicative relationships between corresponding amounts of change of two 
quantities that vary simultaneously.  



 
Meaningful Applications: Students should engage in rates of change as a natural entry point 
to understand, represent, and explain, how quantities change in actual situations. 
Correspondingly, identifying and applying key rate of change characteristics of various 
function types can help reinforce broader understanding of these functions and their value in 
appropriate modeling scenarios. Varying the contexts promotes students’ development of a 
generalized concept of rate of change that is not bound to any single situation or 
representation.  
 
Academic Success Skills: Exploring rate of change in-depth and in meaningful applications 
can help students reinforce their academic identity. Supporting students in constructing 
meaning for foundational mathematical ideas like rate of change allows them to develop the 
expectation that their understandings enable them to reason about novel tasks and contexts. 
This expectation has the potential to reduce or even eliminate the reflexive interpretations of 
mathematical stimuli as potential threats to one’s identity, and which tend to initiate 
unproductive behavioral reactions (e.g., task avoidance; memorization; the unreasoned 
employment of coping mechanisms). In addition to supporting productive meanings for rate 
of change grounded in quantitative and covariational reasoning, CoRD modules could attend 
to reinforcing a growth mindset and encouraging perseverance by providing scaffolding that 
keeps students engaged without preempting their ability to develop significant solutions on 
their own.  

 
Initial resources 

Byerley, C. & Thompson, P. W. (2017). Secondary teachers’ meanings for measure, slope, and 
rate of change. Journal of Mathematical Behavior, 48, 168-193.  

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning 
while modeling dynamic events: A framework and a study. Journal for Research in Mathematics 
Education, 33(5), 352–378. 

Carlson, M. P., Smith, N., & Persson, J. (2003). Developing and connecting calculus students’ 
notions of rate-of-change and accumulation: The fundamental theorem of calculus. In N. 
Patemen (Ed.), Proceedings of the 2003 Meeting of the International Group for the Psychology 
of Mathematics Education–North America (Vol. 2, pp. 165–172). Honolulu, HI: University of 
Hawaii. 

Thompson, P. W. (1994). Images of rate and operational understanding of the Fundamental 
Theorem of Calculus. Educational Studies in Mathematics, 26(2-3), 229-274. 

Thompson, P. W. (1994b). The development of the concept of speed and its relationship to 
concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in 
the learning of mathematics (pp. 181-234). Albany, NY: SUNY Press. 

Thompson, P. W., & Thompson, A. G. (1992). Images of rate. Paper presented at the Annual 
Meeting of the American Educational Research Association, San Francisco. 



Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept 
of derivative. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), Research in Collegiate 
Mathematics Education IV. (Vol 8, pp. 103-127). Providence, RI: American Mathematical 
Society. 

 
  



Targeted Concept 6: Continuity 

Continuity is a property of functions with several important implications. The conclusions of 
Rolle’s theorem, the mean value theorem, the intermediate value theorem, the extreme value 
theorem, and the fundamental theorem of calculus all require a function to be continuous on a 
closed interval. Continuity is also a necessary condition for integrability and for the algebraic 
properties of definite integrals. It is essential that students understand the relationship between 
continuity and differentiability, and leverage their understanding of continuity to make strategic 
inferences about function behavior.  

Generally, modules developed by a CoRD focusing on continuity should support students in at 
least several of the following: 

 Connect/distinguish continuity at a point with the limit of a function at that point.  
 Understanding the relationship between differentiability and continuity, namely that 

differentiability implies continuity.  
 Relate points on non-differentiability (e.g., “corners,” “cusps,” “vertical tangents”) to 

particular discontinuities of the derivative function.   
 Appreciate the role of continuity as a requirement in a variety of important theorems 

(e.g., intermediate value theorem, mean value theorem, extreme value theorem, 
integrability, the fundamental theorem of calculus). 

 Understand the relationship between one-sided limits, two-sided limits, the value of a 
function at a point, and continuity. 

 Interpret various types of discontinuity (e.g., “jump,” “removable,” “oscillating,” 
“infinite”) in terms of limit expressions.  

 Connect the limit definition of continuity to a function’s graph and to intuitive notions of 
continuity (i.e., “you can sketch the graph without lifting your pencil”). 

 Understand of continuity as an extension of limits. 
 Understanding the role of continuity in differentiability conditions. 

 
Participants of the Calculus I Initiation Workshop suggested the following ways modules for this 
targeted topic could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 

Active Learning: An instructor might engage students in active learning to support their 
understanding of continuity and its implications by presenting tasks that require students to 
find the value of a parameter to make a piecewise defined function continuous where at least 
one of the expressions of the function involves computing a limit using a method other than 
direct evaluation. Such tasks require students to apply their understanding that the limit of 
one expression must be equal to the value of the other at a particular input. Other tasks that 
might support students’ active learning include asking them to sketch a graph of piecewise 
function given information about its one-sided limits and value at a point. Crucially, these 
tasks require students to coordinate the limiting value of a function with its value to assess 
whether the function is continuous at a particular point.  
 



Meaningful Applications: Students’ understanding of continuity can be reinforced and 
extended by engaging in applied tasks that require them to use continuity to compute the 
limit of a function and to interpret computational strategies for limit evaluation as an instance 
of leveraging the definition of continuity to evaluate a limit. Additionally, applied contexts 
can support students’ recognition of the importance of continuity as a hypothesis in the 
intermediate value theorem, mean value theorem, and extreme value theorem by exploring 
counterexamples. 
 
Academic Success Skills: Supporting students’ understanding of why the conclusions of 
important theorems in calculus depend on a function being continuous on a closed interval 
enables students to interpret these conclusions as intuitive implications of continuity, not as a 
list of facts to be memorized and applied to solve routine exercises. Interpreting the 
conclusions of these theorems as intuitive implications challenges the common assumption 
that mathematical proficiency is based principally on one’s ability to efficiently recall 
declarative knowledge—a perspective that increases students’ uncertainty as to whether they 
can successfully participate in mathematics. Constructing meaning for continuity and its 
implications allows students to recognize that a small number of essential ways of reasoning 
are sufficient for engaging productively in a variety of tasks, and if students have 
experienced their capacity to engage in these ways of reasoning in several mathematical 
contexts, then they are more likely to appraise task demands as manageable, thus 
encouraging perseverance in problem solving and a growth mindset about mathematical 
ability.  

 
Initial resources 

Jayakody, G., & Zazkis, R. (2015). Continuous problem of function continuity. For the Learning 
of Mathematics, 35(1), 8-14. 

Maharajh, N., Brijlall, D., & Govender, N. (2008). Preservice mathematics students' notions of 
the concept definition of continuity in calculus through collaborative instructional design 
worksheets. African Journal of Research in Mathematics, Science and Technology Education, 
12(1), 93-106. 

Patenaude, R. E. (2013). The use of applets for developing understanding in mathematics: A case 
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Targeted Concept 7: Accumulation, Integrals, and the Fundamental Theorem of Calculus 

Several scholars have described consequential ways of understanding the fundamental theorem 
of calculus and how students might apply definite integrals in modeling problems. Multiple 
studies (Orton, 1983; Orton, 1984; Serhan, 2015; Rasslan & Tall, 2002) suggest that students 
might not hold quantitative meanings for the components of an integral despite being proficient 
with integral calculations. Compounding this potential lack of meaning are various studies 
documenting the challenges students experience when attempting to apply definite integrals to 
contexts in physics or engineering (Sealey, 2014; Meredith & Marrongellle, 2008; Jones 2013; 
Jones 2015; Simmons & Oehrtman, 2017; Chhetri & Oehrtman, 2015; Bajracharya & 
Thompson, 2014). Other research has documented students’ difficulties with coordinating the 
product structure f (xi)Δx of an accumulated quantity (e.g., Sealey, 2014). Mathematics educators 
have responded to these difficulties by demonstrating the effectiveness of engaging students in 
tasks that require them to consider how to approximate the accumulation of a quantity (or to 
construct a function that represents the value of an accumulated quantity) by assuming that a 
varying quantity (a rate, a force, etc.) is constant over some interval of its variation, and then to 
approximate the change in the accumulated quantity over each successive interval by computing 
the product of the (assumed) constant quantity and the change in the independent variable. 
Generally, an important instructional goal is to help students conceptualize the product of the 
integrand and the change in the function’s independent variable as an approximation of the 
change of the accumulated quantity. 

Generally, modules developed by a CoRD focusing on accumulation should support students in 
at least several of the following: 

 Interpret Riemann sums quantitatively by conceiving individual terms in the sum as 
approximations of “bits of change” of some quantity and the sum itself as an approximate 
change in the value of a quantity over a particular interval of the independent quantity’s 
variation.  

 Interpret Riemann sums geometrically as approximations of bounded areas in the 
Cartesian plane.  

 Interpret definite integrals in context as the exact change in the value of a quantity over a 
particular interval of the independent quantity’s variation.  

 Interpret definite integrals geometrically as exact values of bounded areas in the 
Cartesian plane.  

 Leverage the idea of local linearity to approximate the accumulation of a quantity by 
assuming that it varies at a constant rate over small (possibly infinitesimal) intervals of 
the independent variable.  

 Generalize their “adding up pieces” strategy of approximation in kinematic contexts to 
reason about quantifying accumulation in less intuitive contexts.  

Participants of the Calculus I Initiation Workshop suggested the following ways modules for this 
targeted topic could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 

Active Learning: By computing successively refined approximations to the accumulation of 
a quantity, students may engage in a process reflecting the structure of an integral as a limit 



of Riemann sums. Each approximation will require students to attend to the multiplicative 
structure f (xi)⋅∆x as an estimate of a portion of the accumulated quantity (based on an 
assumption of small variation in f across each subinterval). They must attend to the Riemann 
sum as the estimated accumulation over an interval, and refining their approximations 
experience the limiting process. 
 
Meaningful Applications: Focusing on quantitative interpretations of all components of a 
Riemann sum helps students i) understand why the integral is defined as it is, ii) understand 
how to interpret the meaning of of an integral in context, and iii) understand how to develop 
an integral to model a quantity in an appropriate situation. Without a focus on quantitative 
reasoning, students are likely to think that an integral just adds up values of f (x) or only be 
able to interpret integrals as “area under a curve. Furthermore, asking students to reason 
about a variety of contexts that involve accumulation (not just area) provides the opportunity 
for them to generalize their reasoning. As a result, they are better positioned to both interpret 
an integral in terms of its generalized, abstract mathematical structure and to create or 
interpret integrals in a broad range of novel contexts. 
 
Academic Success Skills: Students often interpret the algebraic computations involved in 
applying the fundamental theorem of calculus as the “real math” that replaces ideas about 
limits of Riemann sums that they dismiss as the “hard way” of working with integrals. 
Students need experiences seeing that these underlying meanings enable powerful use of 
ideas about definite integrals. 
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Targeted Concept 8: Modeling 

Creating and interpreting mathematical models is a critical path for students to both better 
understand the underlying mathematics and to be prepared to apply that mathematics in other 
disciplines. In calculus, students have an opportunity to reason about new types of quantities and 
quantitative relationships (such as instantaneous rates) and to distinguish them from previous 
non-calculus quantities (such as constant or average rates).  Students may represent quantities 
and quantitative relationships as ways to mathematize a context or, conversely, to give 
contextual meaning to mathematical symbols. They may strategically manipulate or interpret 
these representations to draw inferences about a context or use the context to construct 
conjectures or arguments about the mathematics.  

Generally, modules developed by a CoRD focusing on modeling should support students in at 
least several of the following: 

 Help students conceive and describe real-world quantities through appropriate 
mathematical representations. Contexts should be chosen to make the mathematics 
amenable to students’ intuitive reasoning that can subsequently be represented by 
mathematical variables, expressions, diagrams, and graphs.  

 Help students conceive and describe relationships between quantities through appropriate 
mathematical representations. Again, contexts should be chosen to enable students to 
more intuitively state, justify, or question relationships between quantities, before 
expressing them through mathematical representations.  

 Help students generalize context-specific reasoning by exploring the same underlying 
mathematical structure in multiple contexts, then reflecting on the similarities and 
differences across the resulting models (e.g., see the description of a learning trajectory 
across calculus leveraging abstraction across multiple contexts in Oehrtman, 2008). 

 Help students abstract mathematical structure by applying concepts developed earlier 
tasks as tools for making sense of new situations in later tasks (e.g., see the description of 
levels of emergent models in Gravemeijer, Cobb, Bowers, & Whitenack, 2000).  

 Develop working with quantities as a central habit of mind for students. This includes 
approaching any modeling situation with the initial aim to identify the relevant quantities 
for the given goal (e.g., see the discussion of extensive quantification in Thompson, 
1994). Students should then distinguish between constant and variable quantities and 
identify relationships between these quantities determined by the situation. Many 
students will need help articulating these relationships initially using concrete numerical 
values for specific variable quantities, then seeing the algebra as a generalization of the 
multiple arithmetic expressions generated by choosing different values.  

 Help students draw effective diagrams of situations with the appropriate information and 
level of detail to support mathematical modeling.  

 Help students model changes in quantities and rates of change of one quantity with 
respect to another. This modeling should i) reinforce a concept of changes in quantities as 
meaningful quantities in their own right, ii) develop a quantitative conception of rate of 
change, and iii) help students identify rate of change features in contexts that correspond 
to particular function types to choose an appropriate algebraic form of a model (e.g., see 



examples of tasks involving modeling with changes and rates of change in Carlson, 
Oehrtman, & Moore, 2016). 

 Emphasize linear, exponential, and quadratic models that reinforce key quantitative 
concepts of constant rate of change, rate proportional to amount, and constant 
acceleration, respectively.  

 Provide opportunitites for students to modeling situations with the full range of central 
constructs in calculus: linear relationships, limits, various types of rates, and 
accumulation. 

Participants of the Calculus I Initiation Workshop suggested the following ways modules for this 
targeted topic could address the three MIP components of mathematical inquiry (see descriptions 
of these components at https://okmip.com): 
 

Active Learning: Modules should engage students as the primary actors in creating and 
interpreting mathematical models. This engagement may focus on certain parts of a broader 
problem-solving process, but throughout the collection of CoRD resources should extend 
through developing, applying, and interpreting models at all stages. In doing so, they should 
support students in representing the products of their modeling activity using increasingly 
appropriate mathematical representations (terminology, symbols, expressions, graphs, 
procedures, etc.) and in interpreting the results of their mathematical computations in terms 
of the context.  
 
Meaningful Applications: Although modeling essentially involves coordinating meanings 
between real-world contexts and mathematical objects and relationships, not all modeling 
activity productively develops conceptual understanding. In particular modules should focus 
students on identifying common structure across multiple modeling activities with different 
contexts as the source of abstracting the particular mathematical concept(s) common to them 
all. 
 
Academic Success Skills: Modules should help students develop a view that mathematics is 
meaningful, both as a set of tools to model real-world situations, but also in the abstract, as 
generalizations of structures present across a wide variety of contexts. Students’ engagement 
in this process should develop their own agency in creating these meanings and reinforce 
their ability to learn through persistence. 
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